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Abstract 
 

With the completion of the human genome and the 
entrance into the post-genomic era, translational 
research rises as a major need. In this paper, we 
present a Knowledge Discovery workflow (KDw) and 
its utilization in the context of clinico-genomic trials. 
KDw aims towards the discovery of ‘evidential’ 
correlations between patients’ genomic and clinical 
profiles. Application of KDw on a real-world clinico-
genomic (breast cancer) study demonstrates the 
reliability, efficacy, and efficiency of the approach. 
 
1. Introduction 
 

Biomedical research has already crossed the gate of 
laboratory bench, moving next to the patient bedside. 
The shift has created a new branch of research, termed 
translational research that catalyzes the clinical 
environment. The vision is to combat major diseases, 
such as cancer, on an individualized diagnostic, 
prognostic, and treatment manner. This requires not 
only an understanding of the genetic basis of the 
disease but also the correlation of genomic data with 
knowledge normally processed in the clinical setting 
[5]. Coupling the knowledge gained from genomics 
and from clinical practice is of crucial importance and 
presents a major challenge for on-going and future 
clinico-genomic trials [13]. Such evidential knowledge 
will augment health care professionals’ decision-
making capabilities in an attempt to support evidence-
based medicine. 

However, post-genomics advances have resulted in 
an explosion of information with the consequent shift 
to investigation methodology: from hypothesis-driven 
to data-driven with a focus on the search of 
biologically relevant patterns. In this dynamic and 

data-rich environment, the process of biomedical 
knowledge discovery calls for the seamless and flexible 
integration of both clinical and genomic disciplines, 
where clinicians, biomedical researchers, and data 
mining researchers exploit data from several diverse 
sources. 

Towards meeting the aforementioned challenges, 
we elaborate on a technology-driven integrated clinico-
genomic knowledge discovery process and its 
utilization in the context of clinical trials. The process 
aims towards the discovery of ‘evidential’ correlations 
between patients’ genomic and clinical profiles, and it 
is realized by the device of a scientific Knowledge 
Discovery workflow (KDw). KDw is developed and 
implemented in the context of an operational integrated 
clinico-genomics environment that encompasses 
components and services for: (i) the seamless 
mediation between distributed and heterogeneous 
clinical and genomic data sources, and (ii) the 
harmonization of interoperable data mining operations 
[6]. 
 

 
 

2. Data Management and Mediation 
 
KDw utilizes two Clinical Information Systems 

(CISs): (a) an Onco-Surgery information system that 
manages information related to BRCA patient 
identification and demographic information, medical 
history, patient risk factors, family history of 
malignancy, clinical examinations and findings, results 
of laboratory exams (mammography, biochemical 
exams, etc.), pre- and post-surgical treatment, as well 
as therapy effectiveness; and (b) a Histo-Pathology 
information system that manages information related to 
patients samples’ histopathological evaluation and 
TNM staging (Tumor size, lymph Node involvement, 
and Metastatic spread). 
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Moreover, KDw utilizes a Genomic Information 
System (GenIS) to store and manage microarray/gene-
expression data. The system is based on the BioArray 
Software Environment BASE [10]. BASE is a 
comprehensive web-based database server that stores 
and manages the massive amounts of data, generated 
by microarray experiments.. We have extended and 
enhanced BASE in order to provide more advanced 
functionality (e.g., improved annotation of results; 
qualification of experiments; and new reporter/gene 
annotations to Gene Ontology (GO) (http://www. 
geneontology.org/). 

Horizontal integration of the engaged heterogeneous 
information systems (CISs and GenIS) is achieved 
through a Web-based data mediation application - the 
Mediator (http://www.ics.forth.gr/~analyti/PrognoChip 
/isl_site/) [1]. The (authorized) biomedical investigator 
can form clinico-genomic queries through the web-
based graphical user interface of the Mediator. The 
query specifies criteria for selecting patients/samples 
(and their corresponding clinical and genomic 
information) that have a specific clinico-histopathology 
profile and participate in microarray experiments of 
specified quality and characteristics. Clinical and 
genomic sub-query results are joined, based on the 
reference IDs of the retrieved patient samples, and an 
output XML file of predetermined schema is created. 
Since the set of selected reporters can be very large, 
reporter/gene annotations are stored in a separate tab-
delimited file. Similarly, the retrieved gene expression 
data for each sample are stored in corresponding tab-
delimited files. These files compose the basic input to 
the data mining operations (Section 3).  

The Mediatior as Web-service. The presented 
mediator infrastructure is deployed as a Web-based 
application. For the realization of KDw, we built a web 
service that receives all the user-interface actions and 
invokes the execution engine of the mediator. The 
mediator executes the queries and stores the final 
results (the aforementioned output files) in the web 
server. The results can be retrieved through a URL that 
is in the disposal of the KDw components and data-
analysis services. 
 

3. Data Mining Operations and Services 
 

Characterization and classification of a disease and 
prediction of respective patients’ clinical outcome may 
be achieved via reference either to solely standard 
clinical patient profiles/phenotypes (CPPs) or, to solely 
genomic/gene-expression profiles/phenotypes (GPPs). 
Starting from observable clinical disease states, the 
quest targets the identification of respective molecular 
signatures or gene markers able to discriminate 
between different disease states. Based on the central-

dogma of molecular biology, CPPs could be fully 
‘shaped’ and causally determined by respective GPPs. 
In this setting, the quest is forwarded towards the 
following task: “which clinical phenotypes relate and 
(how they do so) with specific gene-expression 
phenotypes?” Such a discovery-driven scenario falls 
into the individualized medicine context. GPPs may be 
utilized to ‘screen’ respective CPPs and refine the 
clinical decision making process (leading to the 
identification of specific patient groups that are more 
suitable for specific clinical treatment and follow-up 
procedures). The entire endeavor calls for the 
identification of abductive inferential rules that engage 
both CPPs and GPPs. In order to ease the discovery of 
such evidential associations and rules we elaborate on 
a layered process, realized by the smooth integration of 
two data-mining operations: clustering and association 
rules mining. 
 
3.1 Indicative Gene-Clusters: the Metagenes 
 

With the utilization of a clustering operation, we 
aim to induce indicative clusters of genes that meet a 
special characteristic: all of its genes exhibit a ‘strong’ 
gene-expression profile for all of its linked samples, 
i.e., exhibit solely ‘high’/‘UP’-regulated or solely 
‘low’/‘DOWN’-regulated expression levels. We refer 
to these clusters of genes as Metagenes. Motivated by 
results in (i) the identification of co-regulated groups 
or clusters of genes, (ii) the discriminatory 
decomposition of genes, and (iii) the reduction of the 
dimensionality and complexity of gene-expression data 
[14,16,18], we utilize a categorical k-means clustering 
algorithm, named discr_k-means, that primarily 
identifies clusters of co-regulated binary-valued genes 
[2,12]. In order to overcome the error-prone variance 
of gene-expression levels, gene-expression values are 
discretized (following a data pre-processing 
discretization step) into two nominal values: ‘low’ and 
‘high’. 

Clustering convergence provides a set of rank-
ordered clusters; ordering connotes to cluster strength. 
Applying a filtering operation, we keep just those 
clusters (the Metagenes) for which all of its genes 
exhibit, in an adequate number of samples, 'strong' 
gene-expression profiles. We say that a sample has a 
‘strong’ gene-expression profile for a specific cluster 
of genes, if it exhibits dominantly 'high' or 'low' gene-
expression levels. We are interested in such 'strong' 
clusters, because we want to identify potential subsets 
of samples that tend to exhibit mainly dominantly high 
or low expression levels for the respective genes in a 
cluster. That is why we decide to discretize the 
continuous gene expression levels into two nominal 
values and get the binary-valued gene-expression data 
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transform. The genes of a metagene, accompanied by 
the ‘strong’ samples of the cluster, may be interpreted 
as a combined/hybrid clinico-genomic feature, linking 
patient cases and their genomic (gene-expression) 
profiles. For example, Figure 1 presents an XML-
formatted hybrid clinico-genomic patient case: 
MG20g8c17= DOWN (value code ‘1’ represents the 
DOWN-regulated status of a gene) denotes a metagene 
with id=20 (‘MG20’) that includes 8 genes (‘g8’), 
covers 17 cases (‘c17’), and for all 17 cases all the 
respective genes exhibit a DOWN value. 

 

 
 

Figure 1. An XML-formatted ‘hybrid’ clinico-
genomic (BRCA) patient case description 

 
3.2. Discovery of Clinico-Genomic Associations 
 

The task now is to uncover potential ‘causal’ 
relations that hold between such genomic and clinical 
profiles. We handle this task with an association rules 
mining approach. Association rules mining (ARM) [8] 
is among the most advanced and interesting methods 
for finding interesting patterns and indicative trends in 
data. Given a set of transactions, the ARM problem is 
to discover the associations that have support and 
confidence values higher than the user specified 
minimum support and minimum confidence levels, 
respectively. For the implementation of ARM, we used 
HealthObs [7], which implements ARM operations on-
top of XML documents. Central to the architecture is a 
single data-enriched XML document that contains 
query-specific data from distributed and heterogeneous 
data sources. ARM operations are performed on-top of 
such documents. The implemented ARM operations 
rely on the principles of the Apriori algorithm [8].  

HealthObs as Web-service. The core functionality 
and operations of the originally stand-alone (java-
based) HealthObs application were implemented as a 
Web-service, in order to serve KDw. The 
implementation takes as input four basic arguments (as 
an XML-formatted WSDL definition): the desired 
format of each rule, i.e., the features to be included in 

the ‘IF’ or ‘THEN’ part of the rules (a special 
characteristic offered by HealthObs); the minimum 
support and confidence of the rules, and a string that 
points to the data URL path. The definition of the input 
to HealthObs Web-service follows the BPEL4WS 
specifications (http://www.ibm.com/ 
developerworks/library/specification/ws-bpel/). The 
output of the HealthObs Web-service takes also a 
WSDL definition. The corresponding XML schema 
provides links to the path where the results (i.e., 
induced association rules) are stored, as well as to the 
path where the rules’ visualization component of 
HealthObs is rest. 
 
4. Editing and Enactment of KDw 
 

Each workflow manages the execution of the 
various components that comprise a certain biomedical 
scenario. Possible components include database 
connections, data-mining and visualization tools, meta-
data managing systems etc.  KDw is realized by two 
basic components: the mediator and the data-mining 
(discr_k-means and HealthObs) web-services. 

The workflow editor is an end-user component that 
provides the workflow authoring functionality by a 
user friendly GUI. Realization of KDw is based on the 
Taverna Workflow Editor [17]. It is essential to 
mention that the workflow execution is detached from 
the workflow authoring, i.e., the workflow is not 
executed on the user's desktop and the various by-
products of the execution (results, breakpoints, 
provenance, etc.) are managed and persisted in an 
arbitrary workflow execution environment (i.e., Grid, 
Personal Computer, Web Server, etc.). Each workflow 
can be seen as a service with a single operation (‘enact-
me’) that accepts the workflows parameters and returns 
the workflow results. Again, we rely on Taverna’s 
Workflow Enactment service for the execution of 
KDw. KDw is deployed and runs on a Globus-based 
Grid infrastructure (http://www.globus. org/toolkit/). 

 
5. KDw in Action 
 

We applied and assessed the utility of KDw on a 
real-world, and widely utilized reference breast cancer 
(BRCA) study [11]. The study profiles the expression 
of ~24800 genes on 78 patients aiming towards the 
identification of highly discrimant    molecular 
signatures   (i.e., gene markers),   able to distinguish:  (i) 
between ‘good’ and ‘bad’ prognosis patients’ cases, 
i.e., ‘NO-Metastasis’ and ‘YES-Metastasis’, 
respectively, in a follow-up period of five years;    and    

(ii) between ER+ vs. ER- (i.e., estrogen receptor 
positive vs. estrogen receptor negative) patients. Here, 
we concentrate on both tasks with emphasis on the ER 
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status, which provides a powerful predictive and 
prognostic BRCA marker [15].  

Our aim was to reveal (potentially) interesting 
clinico-genomic profiles that combine patients’ ER-
statuses (i.e., their clinical profile) with indicative 
metagenes (i.e., their genomic profile). The target was 
to increase the confidence of prognostic clinico-
genomic markers. 

With the KDw Mediator component, we retrieved 
and filtered-out genes on the basis of the following 
criteria: 2-fold difference and p-value ≤ 0.01 on at least 
five patient cases (similar criteria were applied in the 
original reference study). A set of ~1000 genes was 
reserved. Then, the discr_k-means component was 
applied on this set of genes with the following 
parameterization: (a) discretization into two intervals – 
‘low’/‘DOWN’-regulated and ‘high’/‘UP’-regulated 
gene-expression levels; (b) seeking for fifty metagenes 
- a high number of clusters is requested in order to 
adequately cover most of the cases and assign them to 
metagenes. A metagene is kept if: (i) all (100%) of its 
genes exhibit ‘low’ or ‘high’ expression levels, and (ii) 
it covers at least fifteen strong cases (~20% of the total 
cases).  

A set of 22 metagenes were induced that cover 77 
cases. With the KDw HealthObs component, we try to 
induce association rules that match the following 
format: 

 
IF    ER-status  = pos/neg 
 

    & Metagene_i = UP/DOWN 
 

    & Metagene_j = UP/DOWN 
 

      … 
THEN  METASTASIS = NO/YES 
 

With a minimum support and confidence of 5% and 
50%, respectively, a set of 193 such rules were 
induced. As it is already mentioned, we are interested 
for highly-confident associations, when specific 
metagenes are included in the ‘IF’ part of the 
corresponding rules.  

With this in mind and inspecting visually the rules, 
we were able to identify a set of prognostic and 
potentially interesting, rules (some of them are shown 
in Table 1). 

The first rule (a) indicates that “with a confidence of 
63%, if ER = pos then NO-metastasis is expected 
within five years” – the rule covers 21 cases. This rule 
could be contrasted with the second rule (b1) stating 
that “with a confidence of 92%, if ER = pos and 
Metagene_9 = UP (denoted with the black-bolted 
cell) then NO-metastasis is expected in five years” – the 
rule covers 11 cases. Even if less cases are covered (11 
vs. 21), the drastic increase in confidence is profound. 

 

Table 1. Indicative Associations/Prognostic Rules 
 

 
 

Moreover, when just ‘Metagene_9 = UP’ (third 
rule, b2) is used (i.e., no reference to ER status is 
made), our confidence for a good prognosis is 
decreased (88% vs. 92%). This is an indication for the 
need to combine both clinical (in this case histology) 
and genomic profiles in order to induce and devise 
reliable prognostic models. The situation becomes 
more drastic with the subsequent rules: rules c and d 
conclude a good prognosis with 100% confidence, 
when ‘Metagene_39’ or ‘Metagene_50’ is 
present in a ‘DOWN’-regulated gene expression status 
(‘DOWN’ is denoted with a gray-bolted cell). 
Analogously, rule e is 59% confident for a bad 
prognosis, when just the ER-status is considered. 
Contrasting rule e with rule f, we note that: if 
‘Metagene_34’ is also engaged in a ‘DOWN’-
regulated status then the confidence for a bad 
prognosis becomes 100%. 

We also performed a biological assessment and 
validation of the discovered rules. For example, 
‘Metagene_39’ (involved in rule c) includes seven 
genes, four of which could be found in public 
databanks, namely: EPHA8, COX7C, ECM1, MYH8 
(note that all these genes exhibit a ‘DOWN’-regulated 
profile in Metagene_39). Down-regulation of 
EPHA8 is important for invasiveness [9]; moreover it 
is found that its over-expression can increase 
metastatic potential [4]. Several studies have suggested 
that over-expression of COX-2 is associated with 
parameters of aggressive BRCA [3]. ECM1 is found to 
promote angiogenesis and its over-expression results to 
tumor growth and metastasis in BRCA cells [20]. 
Finally, it was recently found that two major myosin 
class-II isoforms (in which MYH8 is a member) are 
both expressed in metastatic BRCA cells [19]. 

94949494



Findings demonstrate the potential of the presented 
KDw approach in the course of clinico-genomic 
biomedical research. We believe that following the 
presented exploration methodology and the 
accompanying biological validation of results, KDw 
presents a flexible tool for the discovery of reliable 
clinico-genomic profiles and associations. The entire 
KDw (excluding the mediator component to retrieve 
data from the respective information systems) runs in 
the scale of few minutes. 
 
6. Conclusions 

 

With the use and customization of scientific 
workflow methodologies, enabled by Web-services 
technology, we devised and presented an integrated 
clinico-genomic knowledge discovery workflow 
(KDw). KDw relies on the smooth integration of 
clinico-genomic data mediation and data mining 
components. Overall, KDw composition is based on 
the customization of Web-services for its 
corresponding components, and the utilization of the 
Taverna workflow editing and enactment environment. 
KDw composes a flexible and adaptive tool that 
supports exploration and knowledge discovery 
activities in the context of post-genomic clinical trials. 
Application of the KDw on a real-world breast cancer 
study, followed by a careful exploration methodology, 
demonstrates the reliability and utility of the whole 
approach. 
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