
GridR: An R-based grid-enabled tool for data analysis in ACGT clinico-
genomics trials

Dennis Wegener
Fraunhofer IAIS

Schloss Birlinghoven
53754 St. Augustin, Germany

+49 2241 14 2261
dennis.wegener@iais.fraunhofer.de

Thierry Sengstag
Swiss Institute of Bioinformatics and Swiss
Institute for Experimental Cancer Research

Bâtiment Génopode
CH-1015 Lausanne, Switzerland

+41 21 692 4096
thierry.sengstag@isb-sib.ch

Stelios Sfakianakis

Biomedical Informatics
Laboratory

Institute of Computer
Science

FORTH, Greece
+30-2810-391650
ssfak@ics.forth.gr

Stefan Rüping
Fraunhofer IAIS

Schloss Birlinghoven
53754 St. Augustin,

Germany
+49 2241 14 3512

stefan.rueping@iais.fraun
hofer.de

Anthony Assi
OUEST-genopole Bio-
Informatics Platform

Symbiose Team
IRISA-INRIA

Rennes, France
+33 (0)2 99 84 71 58
anthony.assi@irisa.fr

Abstract

In this paper, we describe an analysis tool based on
the statistical environment R, GridR, which allows
using the collection of methodologies available as R
packages in a grid environment. The aim of GridR,
which was initiated in the context of the EU project
Advancing Clinico-Genomics Trials on Cancer
(ACGT), is to provide a powerful framework for the
analysis of clinico-genomic trials involving large
amount of data (e.g. microarray-based clinical trials).
As a proof of concept, an example of microarray-based
analysis taken from the literature was reproduced using
GridR. As GridR will ultimately be made available to
the ACGT community as a web service, we are
sketching the ACGT project and its architecture in the
present article as well.

1. Introduction
1.1. Overview of ACGT

 In recent years, the rapid development of high-
throughput genomics and post-genomics technologies
has provided clinicians fighting cancer with new
discovery paths and has opened the possibility to
develop patient-specific treatment strategies. However,
the amount of information now available for each
patient (e.g. in microarray context from 10’000s to

100’000s of variables summarizing up-to millions of
array features) has rendered difficult the isolation of
the clinically relevant information from all available
data. Considering the current size of clinical trials
(hundreds of patients), there is a clear need, both from
the viewpoint of the fundamental research and from
that of the treatment of individual patients, for a data
analysis environment that allows the exploitation of
this enormous pool of data [18]. This is the aim of the
Advancing Clinico-Genomics Trials on Cancer
(ACGT) project [1].

ACGT aims at developing an open-source IT
infrastructure to provide the biomedical community
with the tools needed to integrate complex clinical
information and make a concrete step towards the
tailorization of treatment to the patient.

On the data side, the ACGT environment is
designed to be versatile and will allow the integration
of high-throughput databases with data both from
existing (e.g. microarrays, imaging) and future
technologies (e.g. high-throughput proteomics). The
design of the platform considers the integration of
private (i.e. trial-specific) databases with public ones,
thus making publicly available datasets potentially
immediately available for hypothesis validation and
meta-analyses.

On the methodology side, the ACGT platform is
designed to be modular, allowing to integrate
additional data analysis tools (software, both open-
source and commercial, web services) as plugins, as
they become available.

Considering that the amount of data generated is
expected to rise to several gigabytes of data per patient
in a close future access to high-performance computing
resources will be unavoidable. Hence, Grid computing
[8] appears as a promising technology. Access and use
of Grid-based resources is thus an integral part of the
design of the infrastructure.

There are a number of other projects that aim at
developing Grid-based infrastructure for post-genomic
cancer clinical trials, the most advanced of which are
NCI’s caBIG [5] (Cancer Biomedical Informatics
Grid) in the USA and CancerGrid [4] in the UK. The
overall approach in those projects is somewhat
different from the one in ACGT. In caBIG, the bottom-
up, technology-oriented, approach was chosen, in
which the focus was put on the integration of a large
number of analysis tools but with weak concern on
data privacy issues. CancerGrid on the other hand
addresses the very needs of the British clinical
community. As a result some aspects of the project
may not fully overlap with the European and
international scope of ACGT.

In ACGT, with two on-going international clinical
trials actually conducted in the framework of the
project, the approach is top-down, with clinicians’ and
biomedical data analysts’ needs at the heart of all
technical decisions, considering data privacy issues as
central as data analysis needs.

Finally it should be mentioned - although these
aspects are not described in the present text - that the
ACGT project addresses legal and ethical issues related
to clinical trials in distributed computing environment.
Defining a sound legal and ethical framework for the
use of clinical data is essential to gain public
acceptance and support for such initiatives.

1.2. R in clinico-genomic context

The present article describes the initial
implementation of GridR, one of the important analysis
tools to be used in the ACGT environment. GridR is
based on the open-source statistical package R [16].
The R environment provides a broad range of state-of-
the-art statistical, graphical techniques and advanced
data mining methods (including comprehensive
packages for linear and non-linear modelling, cluster
analysis, prediction, hypothesis tests, resampling,
survival analysis, time-series analysis), it is easy
extensible and turned out as the de facto standard for
statistical research and many applied statistics project,
especially in the biomedical field. (R itself is based on

the S language [3] which is also implemented in the
commercially available Splus system).

The associated project BioConductor [10] addresses
the needs of the biomedical and biostatisticians
community for genomic data-analysis oriented R
packages. Numerous methods available as
R/BioConductor packages and considered
experimental a few years ago have been stabilized and
became accepted standard in the analysis of high-
throughput genomic data. Integrating R/BioConductor
in an open-source clinical data-analysis environment is
thus completely meaningful.

In the ACGT analysis environment, R is used as a
user interface and as an analysis tool. R as user
interface is supposed to serve as programming
language interface to the ACGT environment. Used as
analysis tool, the goal is to achieve a seamless
integration of the functionality of R and the ACGT
semantic data services in a grid environment, hiding
complexity of the grid environment as the user might
not want to or is not capable to deal with.

The rest of the paper is organized as follows. In Sec.
2 we sketch the ACGT architecture and give an
overview over the key components. Sec. 3 describes
the general scenario of statistical analysis in the
context of clinico genomic trials and introduces a use
case. In Sec. 4 we describe the grid enabled R
environment GridR in ACGT, which will be evaluated
in Sec. 5, based on the use case “Farmer scenario”.
Finally, in Sec. 6 we describe the relation to other
project from the same area, discuss the results of the
paper and give a future outlook.

2. ACGT Architecture

The ACGT requirements in terms of data
management, efficient utilization of computational
resources, and security can be matched by the adoption
of a Grid infrastructure. The adopted architecture
builds upon the Grid fabric and it is further enhanced
by the deployment of Web Services and Semantic Web
technologies. These technologies, although initially
separated, are currently converging in a
complementary way.

Figure 1: The ACGT layered initial architecture.

The adopted architecture for ACGT is shown in
more detail in Figure 1. A layered approach has been
followed for providing different levels of abstraction
and a classification of functionality into groups of
homologous software entities [21]. In this approach we
consider the security services and components to be
pervasive throughout ACGT so as to provide both for
the user management, access rights management and
enforcement, and trust bindings that are facilitated by
the Grid and domain specific security requirements like
pseudonymization and anonymization. Apart from the
security requirements, the Grid infrastructure and other
services are located in the first (lowest) two layers: the
Common Grid Layer and the Advanced Grid
Middleware Layer. The upper layer is where the user
access services, such as the portal and the visualization
tools, reside. Finally, the Bioinformatics and
Knowledge Discovery Services are the “workhorse” of
ACGT and the corresponding layer is where the
majority of ACGT specific services lie. Some
characteristic examples of these services are:

• Mediator Services that offer uniform access to
distributed and heterogeneous clinical and
biomedical databases.

• Ontology Services that provide a
conceptualization of the domain through the
Master Ontology for Cancer and the “domain of
discourse” for constructing complex queries for
the mediator services.

• Workflow Enactment Services that support the
efficient management and execution of complex
biomedical workflows.

• Metadata Repositories and the corresponding
services for the persistence and management of
services’ metadata descriptions.

• An assortment of data mining and knowledge
discovery tools and services that fulfill the data
analysis requirements of ACGT. In essence the

GridR service is the most prominent tool for
performing these data analyses in ACGT.

In the following sections the description of GridR is
related to the current status of the integration into the
ACGT environment, which is currently focused on the
access to the ACGT grid services.

3. Scenario

In order to illustrate the working principles of
GridR, we have selected the article by Farmer et al. [6],
a simple clinical research project available from the
literature and for which all data were available online
[9]. This also provides a validation of GridR in a
realistic usage.

In the “Farmer scenario”, microarray data
(Affymetrix U133A gene expression microarrays)
obtained from breast cancer tumor samples of 49
patients are used to associate subtypes of breast cancer
to patterns of gene expression and molecular
signatures. R and BioConductor packages are used to
load, normalize and analyze the data. The present work
will be validated by showing that the results of the
original paper can be reproduced using GridR.

The validation of GridR actually implements only a
subset of the analysis steps presented in the original
article, namely the principal component analysis
(PCA). On the other hand, steps related to the quality
control of the arrays are shown, which were not
presented in the original paper. Figure 2 shows the
plots related to those steps; in particular the plot
illustrating the PCA is seen to be identical to that in
[6].

Figure 2: Farmer Scenario plots

4. Use case
The given scenario can be described from the

technical point of view as follows: A researcher wants

to perform interactive, grid-enabled data mining in the
R environment. On his local machine (client) he
develops algorithms using R as user interface. In
clinical context, the data to be analyzed are usually so
large (~800MB in the present, limited, scenario) that a
transfer to the client might be ineffective or not
possible. Besides, execution machines in the grid
environment might have bigger computational power
than client machines. It would be more efficient to just
ship the algorithm to the execution machine (the best
would be if the execution machine is the machine
where the data is located in order to minimize transfer
time), execute it remotely on this machine, and transfer
the results back to the client.

The R environment is used both as a user interface
(client) on the client side and as tool in the grid
environment. GridR provides the execution of a single
R function or a whole R script (wrapped as function) in
the grid. The following subsections give a detailed
description on the current implementation of GridR.

4.1. R as tool

In ACGT the R environment, namely GridR, is used
as a tool for the remote execution of R code in the grid.
More specifically, the task of the execution of the R
code is submitted as a grid job to a remote grid
machine. The current implementation of the server side
GridR components that are related to the grid
environment is based on several external software
components, namely the Globus Toolkit 4 grid
middleware [7], an installation of the R environment
on the grid machines which will execute the functions
remotely and a GRMS-Server installation from the
Gridge toolkit [14] on a central machine in the grid
environment that is responsible, for instance, for
resource management. On the client side, GridR
consists of a set of R functions and involves the Cog-
kit [11], which is responsible for proxy generation and
data transfer, and a GRMS-Client [14].

The client side part is structured around the
components “RemoteExecution” (JobSubmission and
JobDescription Generator) and “Locking”. The
RemoteExecution component is responsible for the
execution of R code as a job in the grid environment by
transforming the R code to execute into a set of files,
creating a job description file in the respective job
description language, and submitting the job to the
resource management system by the GRMS-client.
During this process, the locking component takes care
of the consistency of files/variables.

These components are based on R functions (see
Table 1 and Table 2) so no changes in the core R
implementation are necessary. The functions are based,
among other, on the following R functionalities:

• callbacks - functions that are executed
automatically by R after the user has issued a
command (this is used when checking for results)

• active bindings - a variable is replaced by a
function call which is handling the locking
system and allows working interactively with that
variable. When the variable is read, the
predefined function is called and returns the value
associated to the variable (or an error code if the
variable is locked). When a value is assigned to
the variable the function is called with the value
as parameter for storage in an internal structure.

• parsing of error code - checks for missing values,
variables and functions in the code which is
executed remotely

Name Action
grid.init Initialization of all variables

necessary for the grid execution
grid.exit Unlocks all variables

(grid.unlockAll) and removes all
callbacks

grid.printJobs Prints a summary of running jobs
grid.getLibraries Returns the remote list of libraries

(through grid.apply)
grid.getVersion Returns the remote R version

(through grid.apply)
grid.apply Performs a remote execution of R

functions; waits (callback) or sets
a lock (grid.writeLock)

Table 1: List of functions for the users

Name Action
grid.callback Performs a callback
grid.waitForAll Performs grid.callback for all jobs
grid.readLock Read lock a variable
grid.writeLock Write lock a variable
grid.unLock Removes the lock from grid

variable
grid.unlockAll Unlocking of all grid variables
grid.catchObject
NotFoundError

Error handling by parsing of error
messages

Table 2: List of internal used functions

4.2. R as client

An R programming language interface that supports
the access to the ACGT services is provided in the
ACGT environment. This means that R users and
developers will have access to distributed resources in
a transparent fashion, as if those resources were local.

The complexity of the grid is thus hidden from the
user.

Again, accessing the ACGT grid environment
requires no changes in the core R implementation. In
practice grid access is performed through the call of
predefined R functions loaded from a package. R users
can make use of the grid technology in a transparent
way by passing the functions to be executed in the grid
as input to one of those predefined functions
(grid.apply) in their local code.

Figure 3 shows the execution of a simple sum
function with the GridR client side components.
Details on the steps of execution will be described in
the following section.

Figure 3: Simple GridR Example

5. Evaluation and Testing
The implementation of GridR was validated on the

basis of the “Farmer scenario”, implementing some
typical analysis steps of a microarray experiment.

In the present case, R was used in conjunction with
the BioConductor packages affy, affyPLM and marray,
which are specialized packages for microarray
analysis, to build the individual modules of validation.

Besides loading the expression data matrix and
associated clinical data, those modules contribute in:

• Producing some figures required for the quality
control of the chips (e.g. RNA degradation
plots)

• Producing “MvA plots” to obtain an overall
view of the fraction of differentially expressed
genes.

• Using a variance filter to pick unique probeset
per gene and performing a principal component
analysis, to verify that samples with similar
subtypes group together.

• Extracting symbols of genes most correlated to
molecular markers relevant to the analysis
(androgen receptor, AR, and estrogen receptor,
ESR1).

The analysis steps are wrapped into functions for
remote execution with GridR. In the following the
process of executing a single R function in the grid is
described. The different steps of execution are briefly

shown in Figure 4 (see also Figure 3 for a view from
the R client).

• Function loading. The GridR functions are
loaded from a file or package into the workspace
of the R client.

• Grid initialization. The grid environment is
initialized by calling the function grid.init. This
function sets the paths to the cog-kit and the
grms-client as well as the remote host that will be
taken as execution machine.

• Code writing. The R code which is to be
executed in the grid is written and wrapped as
single R function in the local R environment

• Grid submission. The grid.apply function is
called, that launches the process of submission.
At first, the function to be executed in the grid
and the needed parameters are written into a file
(fx.bin). Then the R script which is actually
executed on the remote machine is generated
(script.R), which is followed by the creation of
the job description for the grid-job-submission by
GRMS (job.xml). The job description file
contains information for the resource
management system, e.g. which application to
execute in the grid (R in the present case), a
dedicated execution machine, which files to
stagein (-out) from (to) the grid to (from) the
execution machine etc. Next a shell file is created,
which specifies the “workflow” which is
performed on the client side (shell.sh). After that,
the R client executes the created shell file in the
background. That is, while the user can directly
continue to work in the R session, the shell file
creates a new proxy if necessary, performs the
file copy from the client to the grid (to a GridFTP
server later used for file stagein), submits the job
to the grid system and, after the execution is
finished, performs the file copy of the result files
(staged out by the grid system) back to the client
machine.

During the remote execution the created R
script is executed on the remote machine, which
reads the parameters and the function from fx.bin,
executes y=f(x) and writes the result into a file
(y.dat).

• Waiting for result. While the remote execution
is active and the R client waits for result (by
checking if the file y.dat is created) the variable y
is locked.

• Result processing. If file y.dat was created on the

remote machine and, together with the result files,
transferred back to the client, the file is loaded.
The exit status is checked and – if the job was

successful – the value is assigned to y and the
variable is unlocked. Further more, if e.g. one of
the result files is a Postscript file, ghostview is
started for result visualization.

Figure 4: Steps of execution

6. Discussion, Related Work, Conclusion
and Future Work

In this paper we have presented the integration of R
in a Grid environment. In the biomedical and
biostatisticians community R is widely used and turned
out as de facto standard. GridR, as one of the important
analysis tools in the ACGT environment, enables users
to run experiments in the grid and profit from the
advantages of grid technology by providing a grid
enabled environment for R. The presented use case
showed the execution of a complex analysis scenario.
It should be considered a proof of concept, as
measurements and statistics about the practical gains in
terms of computational power still need to be done in
the context of large clinical trials. However, it becomes
clear that the availability of GridR will be of great use
to clinicians and clinical-data analysts interested in
computationally heavy data-mining, such as
resampling techniques, full cross-validation of
classifiers or meta-analyses.

The expected benefits for the users are twofold
based on the duality of using the R as a client tool and
executing the R scripts on the Grid. Firstly, we argue
that the R environment is a popular tool among
biostaticians and something that a lot of users are
familiar with. Therefore using R as a user access
environment to interact with the ACGT platform is
beneficial for the acceptance and the active use of the
project’s infrastructure. Secondly, the “gridification” of
the R execution layer implies that the users’ analysis
tasks are executed in an efficient and secure way
relieving the client side of the computational burden
and the need to download all the input data sets. This
architecture also leaves room for many possible

optimizations in the future, e.g. the implementation of
a scheduler that in collaboration with the Grid
scheduling facilities determines the best place to
execute a specific R task based on the data that it
requires.

To our knowledge there has not been so far any
attempt for grid enabling the R environment itself and
using it as user interface for accessing the Grid
resources and invoking the Grid services. Analytical
services in the Grid have been the focus of work in
various previous projects. In particular the Grid Weka
[11] toolkit was an effort to extend the Weka toolkit
[23] so that it uses the Grid computational resources
for data analysis tasks. The Weka4WS toolkit [20] is a
similar work to support the data analysis on the Grid
by offering a WSRF compliant interface to the
machine learning algorithms provided by Weka. Also,
the DataMiningGrid project [19] aims to deliver Grid
interfaces and middleware components to facilitate the
discovery and execution of data mining tools in
distributed Grid environments. One of the results of
this project is a “Data Mining Application Enabler”
which grid-enables existing data mining applications.
Nevertheless, the focus is on generic, mostly command
line, applications (e.g. Bash or Python scripts, C
applications, etc.), although R scripts could be also
handled in the same way: as inputs to the command
line R application.

In [10] a short overview over support for concurrent
computation in R is given. Packages such as snow
(Simple Network Of Workstations), based on the
adoption of an article about benefits and problems with
parallel processes in R [17], and rpvm provide
interfaces in order to support the parallel computation
on clusters. In contrast to the message-passing
interface (MPI) [13] or the parallel virtual machine
(PVM) [15], the snow package provides a higher level
of abstraction that is independent of the
communication technology.

Some rudimentary support for building client server
applications that use R in the server side has been
offered by toolkits like Rserve [22] or Rweb [2] but
these efforts do not offer a seamless integration with
the Grid technologies.

As future work we plan to extend the functionality
offered by GridR to support the interfacing with the
rest of the ACGT services, e.g. the mediator. This will
enable the use of GridR as an all-encompassing user
interface to the whole ACGT environment.
Additionally, the provision of a WSRF compliant
interface to the GridR service functionality will give
the ability to compose higher level workflows that
include GridR and will also make it more compatible
with the service oriented view of the Grid.

Stage out

User

Grid Layer

Remote
Host / Data

GridR as user interface

Stage in

GridR as tool

7. Acknowledgments
The authors gratefully acknowledge the financial
support of the European Commission for the Project
ACGT, FP6/2004/IST-026996.

8. References
[1] ACGT (EU): http://eu-acgt.org/
[2] J. Banfield, “Rweb: Web-based Statistical Analysis”,

Journal of Statistical Software, Vol. 4, Issue 1, 1999
(http://www.math.montana.edu/Rweb/)

[3] R. Becker, J. Chambers, and A. Wilks, The New S
Language, Chapman & Hall, London, 1988.

[4] CancerGrid (UK): http://www.cancergrid.org/
[5] Cancer Biomedical Informatics Grid, caBIG (USA):

https://cabig.nci.nih.gov/
[6] P. Farmer, H. Bonnefoi, V. Becette, M. Tubiana-Hulin,

P. Fumoleau, D. Larsimont, G. Macgrogan, J. Bergh, D.
Cameron, D. Goldstein, S. Duss, AL. Nicoulaz, C.
Brisken, M. Fiche, M., R. Iggo, “Identification of
molecular apocrine breat tumours by microarray
analysis”, Oncogene, 24, 2005, 4660-4671

[7] I. Foster, “Globus Toolkit Version 4: Software for
Service-Oriented Systems”, IFIP International
Conference on Network and Parallel Computing,
Springer-Verlag LNCS 3779, pp 2-13, 2006

[8] I. Foster, C. Kesselman, S. Tuecke, “The Anatomy of
the Grid: Enabling Scalable Virtual Organizations,”
International Journal of High Performance Computing
Applications, vol. 15, no. 3, 2001, pp. 200—222.

[9] Gene Expression Omnibus (GEO), accession number
GSE1561, http://www.ncbi.nlm.nih.gov/

[10] RC. Gentleman, VJ. Carey, DM. Bates, B. Bolstad, M.
Dettling, S. Dudoit, B. Ellis, L. Gautier, Y. Ge, J.
Gentry, K. Hornik, T. Hothorn, W. Huber, S. Iacus, R.
Irizarry, F. Leisch, C. Li, M. Maechler, AJ. Rossini, G.
Sawitzki, C. Smith, G. Smyth, L. Tierney, JY. Yang, J.
Zhang, “Bioconductor: open software development for
computational biology and bioinformatics”, Genome
Bio. (2004) 5(10):R80 (http://www.bioconductor.org/)

[11] R. Khoussainov, X. Zuo and N. Kushmerick, "Grid-
enabled Weka: A Toolkit for Machine Learning on the
Grid", ERCIM News, No. 59, October 2004

[12] G. von Laszewski, I. Foster, J. Gawor, P. Lane,.”A Java
Commodity Grid Toolkit”, Concurrency and
Computation: Practice and Experience, 13, 2001.

[13] MPI Forum: http://www.mpi-forum.org
[14] J. Pukacki, M. Kosiedowski, R. Mikołajczak, M.

Adamski, P. Grabowski, M. Jankowski, M. Kupczyk,
C. Mazurek, N. Meyer, J. Nabrzyski, T. Piontek, M.
Russell, M. Stroiński, M. Wolski “Programming Grid
Applications with Gridge”, Computational Methods in
Science and Technology vol. 12, Poznan 2006.

[15] PVM: http://www.csm.ornl.gov/pvm/pvm_home.html
[16] R Development Core Team (2005), “R: A Language

and Environment for Statistical Computing”, R
Foundation for Statistical Computing, Vienna, Austria,
ISBN 3-900051-07-0 (http://www.r-project.org/)

[17] A. Rossini, L. Tierney and N. Li, "Simple Parallel
Statistical Computing in R", UW Biostatistics Working
Paper Series, Working Paper 193, (March 5, 2003).

[18] S. Rüping, S. Sfakianakis, and M. Tsiknakis,
“Extending workflow management for knowledge
discovery in clinico-genomic data”, in Nicolas Jacq et.
al., editor, From Genes to Personalized HealthCare:
Grid Solutions for the Life Sciences, Proceedings of
HealthGrid 2007, volume 126 of Studies in Health
Technology and Informatics, pages 184–193. IOS
Press, April 2007.

[19] V. Stankovski, M. Swain, V. Kravtsov, T. Niessen, D.
Wegener, J. Kindermann and W. Dubitzky, “Grid-
enabling data mining applications with
DataMiningGrid: An architectural perspective”, Future
Generation Computer Systems, accepted for publication

[20] D. Talia, P. Trunfio, O. Verta, "Weka4WS: a WSRF-
enabled Weka Toolkit for Distributed Data Mining on
Grids", Proc. of the 9th European Conference on
Principles and Practice of Knowledge Discovery in
Databases (PKDD 2005), Porto, Portugal, October
2005, LNAI vol. 3721, pp. 309-320, Springer-Verlag,
2005. (http://dx.doi.org/10.1007/11564126_32)

[21] M. Tsiknakis, M. Brochhausen, J. Nabrzyski, J.
Pucacki, S. Sfakianakis, G. Potamias, C. Desmedt, D.
Kafetzopoulos, “A Semantic Grid Infrastructure
Enabling Integrated Access and Analysis of Multilevel
Biomedical Data in Support of Post-Genomic Clinical
Trials on Cancer”, Digital Object Identifier:
10.1109/TITB.2007.903519 (to appear),
http://ieeexplore.ieee.org/xpl/tocpreprint.jsp?isnumber=
26793&punumber=4233

[22] S. Urbanek, "Rserve - A Fast Way to Provide R
Functionality to Applications" in: Proc. of the 3rd
International Workshop on Distributed Statistical
Computing (DSC 2003), ISSN 1609-395X, Eds.: Kurt
Hornik, Friedrich Leisch & Achim Zeileis, 2003
(http://rosuda.org/Rserve/)

[23] I. Witten and E. Frank, Practical machine learning
tools and techniques. 2nd Edition, Morgan Kaufmann,
2005

